27 research outputs found

    Forest fire causes and motivations in the Southern and South-Eastern Europe through experts' perception and applications to current policies

    Get PDF
    Forest fires causes and motivations are poorly understood in southern and south-eastern Europe. This research aims to identify how experts perceive the different causes of forest fires as defined in the classification proposed by the European Commission in 2013. A panel of experts (N = 271) was gathered from the EU Southern Member States (France, Greece, Italy, Portugal, and Spain) and from Central (Switzerland) and south-eastern Europe (Croatia, Serbia, Bosnia and Herzegovina, Republic of North Macedonia, and Turkey). Experts were asked to answer a questionnaire to score the importance of the 29 fire causes using a five point (1-5) Likert Scale. Agricultural burnings received the highest score, followed by Deliberate fire for profit, and Vegetation management. Most of the events stem from Negligence, whereas malicious fire setting is arguably overestimated although there are differences among the countries. This research demonstrates the importance of different techniques to enhance the knowledge of the causes of the complex anthropogenic phenomenon of forest fire occurrenc

    Does recent fire activity impact fire-related traits of Pinus halepensis Mill. and Pinus sylvestris L. in the French Mediterranean area?

    No full text
    International audienceKey messageClimate change will induce a change in fire frequency in Mediterranean region and that could impact fire-adapted plant species. We showed that fire-related traits of some pine species are strongly related to other factors than fire but the recent fire history has nonetheless an impact on the variation of key traits for different fire adaptive strategies.ContextIn fire-prone Mediterranean areas, climate change is expected to exacerbate the fire pressure on ecosystems, altering the current fire regime and threatening species if they cannot acclimate.AimsStudying intraspecific variations of some fire-related traits in relation to variation in recent fire activity is thus an important step to better understand if this acclimation is possible.MethodsWe measured structural (bark thickness, shoot bulk density, self-pruning, leaf surface to volume ratio) and functional (serotiny level for Pinus halepensis only) traits in two pines species (Pinus halepensis and Pinus sylvestris) commonly found in southeastern France and that present different fire-adaptive strategies (resilience vs resistance, respectively). Populations were sampled according to different fire frequency modalities (0 vs 1 to 2 fires) along a geographical gradient, measuring numerous environmental and plant characteristics to be used cofactors in the analyses.ResultsAs expected, trait variation was strongly linked to environmental and tree characteristics as well as to ontogeny overriding the effect of fire modalities, even though using integrative models with random effect. However, fire modalities had an impact on the variance of some key fire-related traits of Pinus halepensis.ConclusionThis study will help to anticipate the future response of these Mediterranean pine species and further underlines the importance of investigating chemical traits, flammability, and genetic variation of highly heritable traits, such as serotiny

    Contrasting large fire activity in the French Mediterranean

    Get PDF
    International audienceIn the French Mediterranean, large fires have significant socioeconomic and environmental impacts. We used a long-term georeferenced fire time series (1958-2017) to analyze both spatial and temporal distributions of large fires (LFs; ≥ 100 ha). The region was impacted in some locations up to six times by recurrent LFs and 21% of the total area burned by LFs occurred on a surface that previously burned in the past, with potential impact on forest resilience. We found contrasting patterns between the east and the west of the study area, the former experiencing fewer LFs but of a larger extent compared to the latter, with an average time of occurrence between LFs exceeding 4000 ha 50 years in the west. This longitudinal gradient in LF return level contrasts with what we would expect from mean fire weather conditions strongly decreasing eastwards during the fire season but is consistent with larger fuel cover in the east, highlighting the strong role of fuel continuity in fire spread. Additionally, our analysis confirms the sharp decrease in both LF frequency and burned area in the early 1990s, due to the efficiency of fire suppression and prevention reinforced at that time, thereby weakening the functional climate-fire relationship across the region

    Fire frequency, as well as stress response and developmental gene control serotiny level variation in a widespread pioneer Mediterranean conifer, Pinus halepensis

    No full text
    International audienceAbstract Many plants undergo adaptation to fire. Yet, as global change is increasing fire frequency worldwide, our understanding of the genetics of adaptation to fire is still limited. We studied the genetic basis of serotiny (the ability to disseminate seeds exclusively after fire) in the widespread, pioneer Mediterranean conifer Pinus halepensis Mill., by linking individual variation in serotiny presence and level to fire frequency and to genetic polymorphism in natural populations. After filtering steps, 885 single nucleotide polymorphisms (SNPs) out of 8000 SNPs used for genotyping were implemented to perform an in situ association study between genotypes and serotiny presence and level. To identify serotiny‐associated loci, we performed random forest analyses of the effect of SNPs on serotiny levels, while controlling for tree size, frequency of wildfires, and background environmental parameters. Serotiny showed a bimodal distribution, with serotinous trees more frequent in populations exposed to fire in their recent history. Twenty‐two SNPs found in genes involved in stress tolerance were associated with the presence‐absence of serotiny while 37 found in genes controlling for flowering were associated with continuous serotiny variation. This study shows the high potential of P. halepensis to adapt to changing fire regimes, benefiting from a large and flexible genetic basis of trait variation

    Effect of Fire Frequency on the Flammability of Two Mediterranean Pines: Link with Needle Terpene Content

    No full text
    Flammability is a major factor involved in Mediterranean plant evolution that has led to the diversity of fire-related traits according to fire regimes and fire-adaptive strategies. With on-going climate change, new fire regimes are threatening plant species if they do not adapt or acclimate. Studying flammability and terpene content variation according to the different fire frequencies in the recent fire history represents a great challenge to anticipating the flammability of ecosystems in the near future. The flammability of shoots and litter as well as the needle terpene contents of two pine species with different fire adaptive strategies (Pinus halepensis and Pinus sylvestris) were measured according to two fire modalities (0 vs. 1–2 fire events over the last 60 years). Results showed that, regardless of the species and the fuel type, flammability was higher in populations having undergone at least one past fire event even when factors influencing flammability (e.g., structural traits and hydric content) were considered. The terpene content did not vary in P. sylvestris’ needles according to the fire modality, but that of sesqui- and diterpenes was higher in P. halepensis’ needles sampled in the “Fire” modality. In addition, associations made between flammability and terpene content using random forest analyses indicated that the terpene molecules differed between fire modalities for both species and fuel types. The same results were obtained with significant terpenes driving flammability as were highlighted in the PLS analyses, especially for P. halepensis for which enhanced shoot flammability in the “Fire” modality agreed with the adaptive strategy of this species to fire

    Role of land‐cover and WUI types on spatio‐temporal dynamics of fires in the French Mediterranean area

    No full text
    This work aims at assessing, in the French Mediterranean area, the spatio-temporal trends of fires, including their causes, at fine scale (communities), comparing different periods between 1993 and 2017. These trends were compared to those of land-cover and wildland-urban interface (WUI) which were coupled with a spatial analysis of the ignitions in order to highlight the main drivers and preferential areas. Fire density was highly variable among communities, hotspots being located mostly close to big cities but spatially varying in time in contrast to fire occurrence and burned area. A decrease in the unknown cause proportion and a variation of the cause frequency were highlighted among periods, criminal fires being the most frequent and deleterious, especially before 2009, as well as those due to negligence during private activities, mostly after 2009. Land cover classes significantly varied among periods, artificialized and natural areas presenting a reversed trend compared with agricultural areas. Natural areas were the most affected by ignitions (60%), regardless of the period; this trend is slowly decreasing. WUI represented similar to 30% of the study area, the different types varying spatially (denser clustered types mostly located in the South-East) and showed an increase over time, especially for both clustered types but with high variability among communities. Half of the ignitions occurred in WUI, with "very dense clustered" and "scattered" types being the most affected, especially in 2009. Better understanding the spatio-temporal evolution of fires and of their causes should allow refining the fire policies in terms of awareness raising, firefighting means, and land management

    Correction to: Does recent fire activity impact fire-related traits of Pinus halepensis Mill. and Pinus sylvestris L. in the French Mediterranean area?

    No full text
    International audienceThe original article was published with a small but significant mistake. Where “Bark thickness” is in centimetre (cm), millimetre must be noted (mm). In the section “2.3.1. Structural traits”, at the beginning of the second paragraph. Page 5 in the online PDF. In the Table 1: row 1, column “Bark thickness”. Page 6 in the online PDF
    corecore